Optical absorption of hyperbolic metamaterial with stochastic surfaces.

نویسندگان

  • Jingjing Liu
  • Gururaj V Naik
  • Satoshi Ishii
  • Clayton Devault
  • Alexandra Boltasseva
  • Vladimir M Shalaev
  • Evgenii Narimanov
چکیده

We investigate the absorption properties of planar hyperbolic metamaterials (HMMs) consisting of metal-dielectric multilayers, which support propagating plane waves with anomalously large wavevectors and high photonic-density-of-states over a broad bandwidth. An interface formed by depositing indium-tin-oxide nanoparticles on an HMM surface scatters light into the high-k propagating modes of the metamaterial and reduces reflection. We compare the reflection and absorption from an HMM with the nanoparticle cover layer versus those of a metal film with the same thickness also covered with the nanoparticles. It is predicted that the super absorption properties of HMM show up when exceedingly large amounts of high-k modes are excited by strong plasmonic resonances. In the case that the coupling interface is formed by non-resonance scatterers, there is almost the same enhancement in the absorption of stochastically perturbed HMM compared to that of metal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rough metal and dielectric layers make an even better hyperbolic metamaterial

We numerically investigate the influence of roughness in layer thicknesses on the properties of hyperbolic metamaterials (HMMs). We show that random spatial variation of dielectric and metal layer thicknesses, similar to what occurs during actual structure fabrication, leads to dramatic absorption increase compared to an ideal, smooth-layer HMM; the absorption increases more strongly when rough...

متن کامل

Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions

Spontaneous emission patterns of electric and magnetic dipoles on different metallic surfaces and a hyperbolic metamaterial (HMM) surface were simulated using the dyadic Green’s function technique. The theoretical approach was verified by experimental results obtained by measuring angular-dependent emission spectra of europium ions on top of different films. The results show the modified behavi...

متن کامل

Optical properties of a semi-infinite medium consist of graphene based hyperbolic meta-materials with tilted optical axis

In this paper, the  optical properties of a semi-infinite medium composed of graphen-based hyperbolic meta-materials with the optical axis were tilted with respect to its boundary with air, by using the  Maxwell equations; then  the homogeneous effective medium approximation method was  studied. The results showed that the orientation of the structure layers (geometric induced anisotropy) affec...

متن کامل

Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films

Here we realize a broadband absorber by using a hyperbolic metamaterial composed of alternating aluminum-alumina thin films based on superposition of multiple slow-wave modes. Our super absorber ensures broadband and polarization-insensitive light absorption over almost the entire solar spectrum, near-infrared and short-wavelength infrared regime (500–2500 nm) with a simulated absorption of ove...

متن کامل

Invisible Hyperbolic Metamaterial Nanotube at Visible Frequency

Subwavelength-scale metal and dielectric nanostructures have served as important building blocks for electromagnetic metamaterials, providing unprecedented opportunities for manipulating the optical response of the matter. Recently, hyperbolic metamaterials have been drawing particular interest because of their unusual optical properties and functionalities, such as negative refraction and hype...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 22 8  شماره 

صفحات  -

تاریخ انتشار 2014